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Introduction     
Advancements in digital avionics systems have 

accounted for much of the improvement in air 
safety seen over the last few decades. At the same 
time, the growing complexity of these systems 
places greater demands on the flight crew and in-
creases the risk of mode confusion, a phenomenon 
in which pilots become confused about the status of 
the system and interact with it incorrectly. To fly 
commercial flights today, pilots must master several 
complex, dynamically interacting systems, often 
operating at different levels of automation. These 
systems typically have many different modes of op-
eration, with different responses to crew actions 
and the other systems in each mode. Mode confu-
sion occurs when the flight crew believes they are 
in a mode different than the one they are actually in 
and consequently make inappropriate requests or 
responses to the automation. Mode confusion can 
also occur when the flight crew does not fully un-
derstand the behavior of the automation in certain 
modes, i.e., when the crew have a poor “mental 
model” of the automation [4], [10], [9]. This same 
phenomenon is sometimes referred to by the more 
general name of automation surprises. 

There is mounting evidence that mode confusion is 
an important safety concern. Several aircraft acci-
dents and incidents involving mode confusion are 
listed in [7]. A study conducted by the Massachu-
setts Institute of Technology found 184 incidents 
attributed to mode awareness problems in NASA's 
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Aviation Safety Reporting System (ASRS) [21]. In 
a survey of 1,268 pilots published in 1999 by the 
Australian Bureau of Air Safety Investigation 
(BASI), 73% of the respondents indicated that they 
had inadvertently selected a wrong mode. More-
over, 61% of the respondents agreed that there were 
still things about the automation that took them by 
surprise [2]. Of 536 interventions recommended by 
the Loss of Control Joint Safety Analysis Team 
(JSAT), they recommended improved training of 
automated flight systems as their 6th most important 
intervention and improved feedback from the auto-
mation as their 22nd most important intervention [6]. 
Advisory Circular AC/ACJ 25.1329 on Flight 
Guidance System Approval identifies “autoflight 
mode confusion as a significant safety concern” [1]. 

The basic premise behind detecting mode con-
fusion through analysis of system requirements or 
design specifications is that certain design features 
or patterns are more likely to cause mode confusion 
than others. Studies by Sarter and Woods have 
found evidence for this hypothesis [17], [18], [19], 
[20], and Leveson, et. al. [9] used their work to 
identify several categories of problematic design 
features. In [10], we extended this work with addi-
tional examples from the literature and a checklist 
of specific design features to be searched for during 
manual reviews. This taxonomy and checklist was 
used as the basis for an informal review for poten-
tial sources of mode confusion in a representative 
specification of a Flight Guidance System mode 
logic [11], [12]. 

This paper describes the use of automated 
analysis tools, such as model-checkers [5] and 
theorem provers [13], to search for potential 
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sources of mode confusion in a representative 
specification of the mode logic of a Flight Guidance 
System [11].  

The Problem Domain 
In our studies we have used the Flight Guid-

ance domain. The following sub-sections provide a 
brief overview of the Flight Guidance System with 
an emphasis on the mode logic.  

The Flight Guidance System  
A Flight Guidance System (FGS) is a compo-

nent of the overall Flight Control System (FCS). It 
compares the measured state of an aircraft (position, 
speed, and altitude) to the desired state and gener-
ates pitch and roll guidance commands to minimize 
the difference between the measured and desired 
state. A simplified overview of an FCS that empha-
sizes the role of the FGS is shown in Figure 1. 
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Figure 1: A section of the Avionics System 

The flight crew interacts with the FGS primar-
ily through the Flight Control Panel (FCP). The 
FCP includes switches for turning the Flight 
Director (FD) on and off, and switches for selecting 

the different flight modes. The FCP also supplies 
feedback to the crew, indicating selected modes by 
lighting lamps on either side of a selected mode's 
switch. 

The mode logic determines which lateral and 
vertical modes of operation are active and armed at 
any given time. These in turn determine which 
flight control laws are active and armed. These are 
annunciated, or displayed, on the Primary Flight 
Displays (PFD) along with a graphical depiction of 
the flight guidance commands generated by the 
FGS. The Primary Flight Display annunciates es-
sential information about the aircraft, such as air-
speed, vertical speed, altitude, the horizon, and 
heading. The active lateral and vertical modes are 
annunciated at the top of the display. 

The Flight Guidance System Mode Logic 
A mode is defined by Leveson et. al. as a 

mutually exclusive set of system behaviors [9]. The 
primary modes of interest in an FGS are the lateral 
and vertical modes. The lateral modes control the 
behavior of the aircraft about the longitudinal, or 
roll, axis, while the vertical modes control the 
behavior of the aircraft about the vertical, or pitch, 
axis. In addition, there are a number of auxiliary 
modes, such as half-bank mode, that control other 
aspects of the aircraft's behavior. 

A mode is said to be selected if it has been 
manually requested by the flight crew or if it has 
been automatically requested by a subsystem such 
as the FMS. The simplest modes have only two 
states, cleared and selected. Some modes can be 
armed to become active when a criterion is met. In 
such modes, the two states armed and active are 
sub-states of the selected state. Some modes also 
distinguish between capturing and tracking of the 
target reference or navigation source. Once in the 
active state, such a mode's flight control law first 
captures the target by maneuvering the aircraft to 
align it with the navigation source or reference. 
Once correctly aligned, the mode transitions to the 
tracking state that holds the aircraft on the target. 
Both the capture and track states are sub-states of 
the active state and the mode's flight control law is 
active in both states. 
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The mode logic consists of all the available 
modes and the rules for transitioning between them. 
Figure 2 provides an overview of the Flight Guid-
ance System modes. Traditionally, aircraft modes 
are associated with a flight control law that deter-
mines the guidance provided to the flight director or 
autopilot. For example, in Figure 2, there are lateral 
modes of Roll Hold, Heading Hold, Navigation, 
Lateral Approach, and Lateral Go Around. These 
control the guidance about the longitudinal, or roll, 
axis. Guidance about the vertical, or pitch, axis is 
controlled by the vertical modes of Pitch, Vertical 

Speed, Altitude Hold, Altitude Select, Vertical Ap-
proach, and Vertical Go Around. Each of these 
modes are associated with one or more control 
laws. 

In order to provide effective guidance of the 
aircraft, these modes are tightly synchronized. 
Constraints enforce sequencing of modes that are 
dictated by the characteristics of the aircraft and the 
airspace. The mode logic is responsible for enforc-
ing these constraints. 

 



Published in the Proceedings of the 22st Digital Avionics Systems Conference (DASC'03), Indianapolis, Indiana, Oct. 12-
16, 2003. Selected as best paper of session. 

 

 

Flight Modes
On

Vertical Modes

Off

Lateral Modes

Vertical Approach

Selected

Armed
Cleared

Active

Altitude Select

Selected

Cleared

Vertical Go Around

SelectedCleared

Navigation
Selected

Armed
Cleared

Active

Lateral Approach

Selected

Armed
Cleared

Active

Pitch
SelectedCleared

Vertical Speed
Selected

ClearedSltitupe SoldSelected

ClearedSoll SoldSelectSelect



Published in the Proceedings of the 22st Digital Avionics Systems Conference (DASC'03), Indianapolis, Indiana, Oct. 12-
16, 2003. Selected as best paper of session. 

 

 

Language), which was developed by Nancy 
Leveson’s group at University of California, Irvine. 

Mode Confusion Analysis 
The basic premise behind detecting mode con-

fusion through analysis of system requirements or 
design specifications is that certain design features 
or patterns are more likely to cause mode confusion 
than others. Studies by Sarter and Woods have 
found evidence for this hypothesis [17], [18], [19], 
[20], and based on these studies, Nancy Leveson, et. 
al. [9] identified categories of design patterns that 
have historically been a source of mode confusion. 
In [4] and [10], we elaborated on a few of these 
categories and sketched out a direction for 
approaching mode confusion analysis using formal 
methods. The authors also noted the need for under-
standing these categories well enough to formalize 
them mathematically so as to perform formal analy-
sis. In this section, we first discuss the general strat-
egy of our formal approach to mode confusion 
analysis. We then introduce the formal methods 
tools that we used for the mode confusion analysis 
and discuss their applicability to this type of analy-
sis. Finally, we provide a few examples of the 
formalization of mode confusion properties and 
performing the analysis with the help of these tools. 

Formal Approach to Mode Confusion 
Analysis 

A novel aspect of our approach to mode confu-
sion analysis is that it emphasizes the use of formal 
verification tools for exploration rather than verifi-
cation. In verification, one postulates a property 
that is believed to be true of a model and uses the 
verification tool to determine if the property holds 
or not. When used for exploration, one postulates a 
property that is probably false of the model, and 
uses the verification tool to generate insights into 
why the property is false.  

For example, transitions to infrequently seen, 
or off-normal, modes are often cited as a potential 
source of mode confusion [9], [18]. Identifying all 
the scenarios that can cause an off-normal mode to 
be entered may not be obvious in a complex speci-
fication. The following paragraphs cast this 

example as both a verification and an exploration 
problem and describe our approach in each case. 

When approached as a verification problem, 
we first enumerate all the acceptable ways of 
entering the mode and then verify that it is indeed 
an exhaustive list. If we are unable to verify this, 
i.e., there are other ways by which we can enter the 
mode, we consider it to be an error in the 
specification, change the specification to remove 
the error, and repeat the process until the original 
property is verified. The verification process can 
thus be viewed as one of debugging the specifica-
tion to remove errors in it. 

When approached as an exploration problem, 
our aim is to search for all the unknown ways by 
which the mode can be entered. To do this, we 
postulate that there are no ways by which the mode 
can be entered, then use the formal verification tool 
to identify the ways in which this is not true, then 
amend our property to state that there are no 
scenarios by which the mode can be entered except 
for these, and repeat the process until the property is 
true. This list of ways in which the mode can be 
entered can then be reviewed with pilots and 
engineers to determine if any of them pose an 
unacceptable risk of pilot confusion.  

Most of the mode confusion analysis falls un-
der the exploration category, as we are typically 
searching for new scenarios that may be a potential 
source of mode confusion. 

Formal Methods Tools 
To analyze the FGS model for Mode confu-

sion, we made use of two analysis tools– the PVS 
theorem prover and the NuSMV model checker. 

The NuSMV Model Checking System 
Model checking is a formal verification tech-

nique that allows one to check for safety and live-
ness properties of a model through exhaustive ex-
ploration of the state space. This makes verification 
of properties highly automated and straightforward. 
However, state space explosion limits the size of 
the models that can be analyzed. 

NuSMV is a re-implementation and extension 
of SMV [5], the first model checker based on 
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BDDs. NuSMV has been designed to be an open 
architecture for model checking, which can be re-
liably used for the verification of industrial designs, 
as a core for custom verification tools, as a testbed 
for formal verification techniques, and applied to 
other research areas [13]. Properties to be verified 
in NuSMV are specified using either branching 
time logic (CTL) or linear time logic (LTL) [5]. 

The PVS Theorem Proving System 
In contrast to model checkers, theorem provers 

apply rules of inference to a specification in order 
to derive new properties of interest. Theorem 
provers are generally harder to use than model 
checkers, requiring considerable technical expertise 
and understanding of the specification. However, 
theorem provers are not limited by the size of the 
state space. Also, some properties that cannot be 
easily specified using model checkers, such as 
comparing properties of two arbitrary states that are 
not temporally related, can be easily specified in the 
languages of most theorem provers. 

PVS is an environment for specification and 
verification that has been developed at SRI Interna-
tional’s Computer Science Laboratory. The system 
consists of a specification language, a parser, a type 
checker, and an interactive proof checker. The PVS 
specification language is based on higher order 
logic with a richly expressive type system so that a 
number of semantic errors in specification can be 
caught during type checking. The PVS prover con-
sists of a powerful collection of inference steps that 
can be used to reduce a proof goal to simpler sub-
goals that can be discharged automatically by the 
primitive proof steps of the prover. The primitive 
proof steps involve, among other things, the use of 
arithmetic and equality decision procedure, auto-
matic rewriting, and BDD-based Boolean simplifi-
cation [13]. 

Applicability of the Formal Methods Tools to 
Mode Confusion Analysis 

Earlier studies support the applicability of 
model checkers and theorem provers for mode con-
fusion analysis [4], [15], [16]. To make these for-
mal analysis tools applicable to our domain, the 
critical systems research group at the University of 

Minnesota built translators from the RSML-e 
specification language to the input languages of 
NuSMV and PVS, allowing us to apply these 
formal analysis tools to the translated RSML-e 
specification. We used these tools to analyze the 
translated FGS specification [11] originally defined 
in RSML-e for some of the patterns identified in the 
mode confusion taxonomy [10]. This analysis using 
NuSMV and PVS is described below.  

When given a verification type of mode confu-
sion property, the NuSMV model checker can de-
termine either that the property is true or that there 
is an error in the specification indicated by a 
counter-example. When checking a false property, 
NuSMV can find only one counter-example at a 
time. For performing exploratory analysis with the 
help of NuSMV, we need to proceed by dismissing 
each counter-example that we encounter by adding 
that condition as a known way of violating the 
property and repeating the process until the prop-
erty is verified. Sometimes NuSMV will generate 
several counter-examples due to a single higher-
level condition. In this case, the user may need to 
find a single stronger condition that encompasses 
all the specific counter-examples. Extracting rele-
vant information from the counter-examples is a 
difficult job that often requires domain expertise.  

Since the FGS mode logic consists almost en-
tirely of enumerated and Boolean types, it is ideally 
suited to verification through model checking. Not 
surprisingly, proving a property of the mode logic 
with PVS usually required more effort than with 
NuSMV. If our specification had included more 
integer or real variables, this situation would 
probably have been quite different. One surprise 
was that once completed, the PVS proofs often ran 
faster than the corresponding proof in NuSMV.  

One advantage of using PVS for the ex-
ploratory analysis is that it lists all the violations of 
the property as un-dismissed sub-goals of the proof 
tree. With adequate knowledge of the domain, the 
user can recognize an unprovable sub-goal at a 
higher level in the proof tree. This avoids the bur-
den of extracting stronger conditions as in NuSMV. 
Conversely, the user can proceed down the proof 
tree by proving parts of a sub-goal to get a more 
refined condition. An advantage of using PVS is 
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that the user has finer control of the level of detail 
exposed in the sub-goals. 

We found both NuSMV and PVS useful in 
performing our analysis. Since the mode logic lends 
itself so well to model checking, the level of auto-
mation provided by NuSMV would often save us 
considerable time and effort. On the other hand, a 
skilled user of PVS could often gain insights while 
doing the proof that might be missed using 
NuSMV. We also encountered some properties that 
could not be specified in CTL or LTL but could be 
expressed in PVS. These are discussed later. 

Examples of Mode Confusion Patterns 
and their Analysis 

We analyzed our specification for several 
patterns that might indicate a potential source of 
mode confusion. In the following sub-sections, we 
will describe in detail the formalization and analysis 
of three major patterns. The analysis of the 
remaining patterns was similar to these and hence is 
described here only briefly.   

Transitions between Normal and Off-normal 
Modes 

Sarter and Woods [18] found that most 
difficulties related to mode confusion occur during 
off-normal, time critical situations such as aborted 
takeoff, disengagement from an automatic mode 
during approach, or loss of glide slope signal during 
final approach. In a complex specification, it may 
be difficult to determine all the scenarios under 
which an off-normal mode can be entered or exited. 
Formal analysis tools such as a model checker or 
theorem prover can be used to identify the 
conditions under which these modes can be entered 
or exited.  

The general strategy to identify all the ways a 
system can enter a mode is to first prove that the 
system will indeed enter the mode for all the known 
ways, and then try to prove that if none of these 
conditions exist, the system will not enter the mode. 
This will identify any unforeseen ways in which the 
mode can be entered, which are then added to the 
list of known ways. This process is repeated until 

all the ways to enter the mode are identified. The 
process is similar for finding all the ways a mode 
can be exited.  

A committee consisting of engineers, pilots, 
and specialists in human factors identified Roll, 
Pitch, and Overspeed modes as off-normal modes. 
The selection of Roll and Pitch as off-normal modes 
may be surprising, as these are the default modes of 
operation. However, in our example, they are never 
directly selected by the pilot. Instead, they are de-
fault modes that become active when the active 
mode is deselected, either by the pilot or by the 
system. For this reason, there are many ways to en-
ter these modes. 

We performed an analysis of the ways ROLL 
and Overspeed mode could be entered using both 
PVS and NuSMV. When analyzing for ROLL 
mode, we started with nineteen known ways of en-
tering ROLL mode. The first step was to verify that 
each of these nineteen conditions indeed caused 
entry into ROLL mode. This step frequently re-
vealed exceptions, forcing the conditions to be 
strengthened. For example, in PVS, the condition, 
that ROLL mode is entered when the FLC switch is 
pressed while the mode annunciations are turned off 
was originally stated as: 
ROLL_Selected_If_FLC_Switch_Pressed_While_Modes
_Off: LEMMA =  

verify((Is_This_Side_Active AND  

NOT PREV(Is_ROLL_Selected) AND  

NOT PREV(Mode_Annunciations_On) AND  

When_FLC_Switch_Pressed_Seen) IMPLIES  

ROLL == L(Selected)) 

The verification of this property lead to an unprov-
able sequent in PVS (and a counter-example in 
NuSMV) pointing out that HDG mode rather than 
ROLL mode would be selected if the pilot or copi-
lot pressed the HDG switch at the same time the 
FLC switch was pressed. Consequently, the condi-
tion was modified to state that ROLL mode would 
be entered if the modes are off and the FLC switch 
is pressed and no other lateral model is requested 
at the same time. After all the known ways in which 
ROLL mode can be entered were proven, these 
were encoded in a condition, 
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ROLL_Selected_Known_Ways, and the following 
theorem was defined to verify that this was indeed 
an exhaustive list of conditions causing entry into 
ROLL mode: 
ROLL_Not_Selected: THEOREM  

verify(((NOT (PREV(ROLL)) == L(Selected)) AND  

NOT ROLL_Selected_Known_Ways) IMPLIES  

NOT (ROLL == L(Selected))) 

Attempting to prove this theorem lead to unprov-
able sub-goals, which in turn lead to the discovery 
of two additional ways of entering ROLL mode that 
had been overlooked. We finally ended up with an 
exhaustive list of twenty-one different ways of en-
tering ROLL mode. While none of these were sur-
prising in retrospect, it is notable that individuals 
familiar with the specification were unable to come 
up with an exhaustive list without formal analysis. 

Unintended Side Effects 
Unintended side effects occur when an action 

intended to have one effect has an additional effect 
not anticipated by the operators [9], [18]. These can 
include unanticipated mode changes or changes in 
the system state. Examples include changing a 
mode when a new target value is entered, clearing 
related data when new data are entered, or changing 
a mode for one controller when a mode in a differ-
ent controller is changed. Not all side effects are 
undesirable. Often, they provide convenient short-
cuts for the operator, such as turning the system on 
if it is off when selecting a system function, or 
clearing out data that is no longer valid. In some 
cases, the absence of the side effect may itself be a 
source of mode confusion if the operator anticipates 
the side effect as a natural consequence of the 
original operator action.  

An effective way of identifying unintended 
side effects, as well as several other potential 
sources of mode confusion, is to identify the 
response of the system to each operator input. Since 
we already have an RSML-e specification of how 
the system responds to all its inputs, it is possible to 
prove that the new partial specification (i.e., the 
response of the system to a single operator input) is 
consistent with the full specification. Typically, this 
proof identifies several exceptions, which are the 

side effects that are not well understood. We conse-
quently revise the specification of the expected 
system response until we have captured the actual 
system response to the operator input. These speci-
fication fragments provide valuable insight into 
how the system behaves in a format that is often 
obscured by the full model. Reviewing these 
specification fragments with pilots and experts in 
human factors can lead to the identification of 
several potential sources of mode confusion. 

The first step in this process is to identify the 
possible operator inputs and to define the notion of 
the system state. The next step is to specify how the 
system state variables change in response to each 
operator input. For the purpose of this analysis, it is 
convenient to specify this change in state as a pri-
mary effect and several secondary effects. 

For example, PVS can be used to detect unin-
tended side effects by defining what the primary 
effect of each operator input should be, and then 
trying to prove that for every state, the effect of that 
input is only the primary effect. The exceptions to 
this proof are the side effects. The proof statement 
can then be strengthened to state the effect of the 
input is the primary effect and all of the side ef-
fects. In this way, the list of side effects can be 
enumerated.  

To keep the proofs manageable, we chose to 
do this by defining how each component of the 
system state responds to each operator input. For 
example, based on our experience with the FGS 
system, we postulated that the effect of pressing the 
FD switch on the first component of the system 
state, the autopilot (AP), was to not affect the AP 
state at all. This is stated in PVS as the lemma: 
FD_Switch_AP_Side_Effects : LEMMA       

verify((Is_This_Side_Active AND   

When_FD_Switch_Pressed_Seen)   

    IMPLIES (AP == PREV(AP))) 

which claims that if this side of the FGS is active 
and the FD switch is pressed and no higher priority 
event preempts the pressing of the FD switch, then 
the state of the AP is just its value in the previous 
state. This lemma is easily proven in PVS in a few 
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seconds, confirming that pressing the FD switch has 
no side effects on the AP.  

The situation becomes more interesting as we 
proceed to the display of the lateral and vertical 
mode annunciations. The mode annunciations are 
turned on when either the onside or the offside FD 
are turned on and are turned off when both the on-
side and offside FDs are turned off. However, we 
wish to define this not in terms of the onside and 
offside FD, but in terms of the FD switch. After a 
few iterations defining the behavior of the RSML-e 
mode annunciations when the FD switch is pressed 
and trying to prove that behavior agrees with the 
model, we proved the following PVS lemma 
FD_Switch_Modes_Effects : LEMMA   

verify((Is_This_Side_Active AND  

   When_FD_Switch_Pressed_Seen) IMPLIES    

   IF PREV(Modes) == L(Off)   

THEN Modes == L(On)  

ELSE   

     IF (PREV(Onside_FD) == L(Off) OR  

         Overspeed_Condition OR  

 Is_AP_Engaged OR  

 Offside_FD == L(On))  

    THEN Modes == L(On)  

    ELSE Modes == L(Off)  

    ENDIF  

ENDIF) 

This lemma states that if this side of the FGS is 
active and the FD switch is pressed and no higher 
priority event preempts the FD switch, then if the 
mode annunciations were off in the previous state, 
they will be turned on. If the mode annunciations 
were on in the previous state, then if the onside FD 
was on in the previous state, or an Overspeed con-
dition exists, or the AP is engaged, or the offside 
FD is on, then the mode annunciations will remain 
on. Otherwise they will be turned off. As shown by 
this simple proof, pressing the FD switch has rather 
complicated side effects on the mode annunciations. 
The remaining question is whether these side ef-
fects are appropriate, a question best answered by 
experts in human factors and pilots. Depending on 
the audience’s comfort with mathematical logic, it 

may be necessary to present these results in a more 
intuitive format. 

This process is continued for each operator in-
put and each component of system state in order to 
generate a complete description of how the system 
state responds to each operator input. As shown by 
these examples, the response of the system to each 
input can be surprisingly complex. Even for some-
thing as simple as pressing the FD switch, the au-
thors of the full FGS specification found it difficult 
to predict how each component of the system state 
would change without using formal analysis. 

Indirect Mode Changes / Hidden Modes 
Indirect mode changes occur when the auto-

mation changes mode without an explicit instruc-
tion by the operator. Indirect mode changes are a 
natural consequence of delegating tasks to the 
automation and cannot be eliminated without losing 
the benefits of automation. At the same time, indi-
rect mode changes are obvious sources of mode 
confusion. Most indirect mode changes can be eas-
ily identified through inspection simply by review-
ing how the non-operator inputs are used. 

A mode is operationally relevant if the system 
responds differently to operator or sensor inputs 
while in that mode. Hidden modes are operationally 
relevant modes that are not annunciated. The entry 
of a hidden mode differs from an indirect mode 
change in that the operator receives no indication of 
the change in behavior. While this is technically the 
same thing as an un-annunciated indirect mode 
change, hidden modes seem to be so frequently in-
volved in incidents of mode confusion that we have 
chosen to identify them as a separate category. 

Finding hidden modes in a large, complex 
system appears to be an intrinsically hard problem. 
These modes are hidden precisely because they are 
buried in a sea of complex logic.  What is needed is 
a systematic way to search a large, complex 
specification for hidden modes of behavior. 
Fortunately, the same approach that was used to 
search for unintended side effects can be used to 
detect hidden modes. The basic idea is to determine 
the change in the system state for each operator in-
put, i.e., to differentiate the specification with re-
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spect to each operator input.  This breaks a large, 
complex specification down into many small frag-
ments that can be easily reviewed. Hidden modes 
are identified by asking whether the pilot has suffi-
cient information to predict how each new state 
value will be changed in response to the operator 
input. Situations where the pilot does not have 
sufficient information indicate the presence of a 
hidden mode.  

For example, consider the FD_Switch_Mode_ 
Effects lemma described in the discussion of unin-
tended side effects. This lemma states that the new 
value of the mode annunciations are determined by 
values of the previous system state (i.e., 
PREV(Modes) and PREV(Onside_FD)),  and the 
current inputs (i.e., Overspeed_Condition, 
Is_AP_Engaged, and Offside_FD). The key ques-
tion is whether these values are available to the pi-
lot.  The status of the mode annunciations and the 
onside FD cues in the previous step are available on 
the Primary Flight Display (PFD).1 The current 
status of the autopilot (AP) is also displayed on the 
PFD. An overspeed condition is annunciated by 
both aural and visual alarms. However, the status of 
the offside FD is visible to the pilot only by looking 
at the copilot’s display (and vice-versa). If the 
offside FD is not adequately visible to the pilot, 
there is no way for the pilot to predict whether the 
mode annunciations will turn off when pressing the 
FD switch. This is a hidden mode.  

While this is probably not a significant source 
of mode confusion, it does illustrate a systematic 
process by which hidden modes can be detected. In 
effect, the exact same analysis done to identify un-
intended side effects can also be used to detect hid-
den modes.  

Operator Authority Limits / Ignored Operator 
Commands 

Operator authority limits restrict the control of 
the operators in order to prevent the system from 
entering a hazardous state. An obvious danger of 
operator authority limits is that they may prohibit 

                                                      
1 We assume the pilot will recall the previous displayed values 
given the standard 1/20th of a second refresh rate. 

maneuvers that are required in extreme situations. 
Another danger occurs when pilots are not aware 
that these limits are in effect. Mode confusion can 
also arise if the crew expects operator authority 
limits to be in effect when they are not. This is es-
pecially true if the operator authority limits are pre-
sent in most but not all modes. 

The operator authority limits of the most inter-
est are those related to continuous operator inputs, 
such as moving the throttles or the yoke. Unfortu-
nately, the operator inputs in the FGS model are all 
discreet inputs, such as pressing a mode switch or 
engaging the autopilot. Ignored Operator 
commands are a special case of operator authority 
limits directly relevant to such discreet inputs.  

Ignored operator commands commonly occur 
when a system ignores an operator command, not to 
prevent entry of a hazardous state, but because the 
command is meaningless in the current mode. Sim-
ply ignoring an operator command may or may not 
be appropriate. In some situations, the operator 
should receive an indication of why the command 
has been rejected so that they can correct their 
mental model. Also, without an indication that a 
command has been rejected, the operator may think 
the command has been accepted, leading to further 
confusion. In other situations, it may be clear both 
that the request has been ignored and why and pro-
viding the operator with more feedback is unneces-
sary. 

To detect all ignored operator commands so 
that each can be reviewed, one attempts to prove 
that every operator input causes some visible 
change in the system state. The exceptions to this 
proof are ignored operator commands. This analysis 
closely follows the unintended side effects and 
hidden modes and is not described here further. 

Interface Interpretation Errors 
Interface interpretation errors are those in 

which the system interprets user-entered values dif-
ferently than intended or maps multiple conditions 
onto the same output depending on the controller’s 
current mode [9], [18]. If the users misunderstand 
what mode the system is in, or have a poor mental 
model and do not understand how the current mode 
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affects the inputs or the outputs, they are likely to 
enter the wrong values or become confused about 
what the system is telling them. 

Potential input interpretation errors can be de-
tected by looking at each operator input and deter-
mining if its effect on the system state is dependent 
on the current state of the system or other inputs. 
The analysis for this is very similar to that de-
scribed to detect unintended side effects and hidden 
modes.  

Lack of Appropriate Feedback 
An important source of mode confusion is lack 

of appropriate feedback about the system [9], [18], 
referred to by Billings as opacity [3]. Feedback 
about the current system state is obviously essen-
tial, but operators also need feedback about pending 
changes to allow them to anticipate system behavior 
[9], [18].  

An obvious source of mode confusion occurs 
when the operator is not provided with sufficient 
information to distinguish between two different 
configurations of system modes. To detect this, we 
need to define what it means for two arbitrary states 
to have the same modes and what it means for two 
states to have the same mode annunciations. As it is 
not possible to express properties about two 
arbitrary states in CTL, we found PVS better suited 
for searching for this potential source of mode 
confusion than NuSMV. 

Reviewing the list of FGS state variables, we 
determined that two states s1 and s2 have the same 
lateral modes if the following PVS predicate holds: 
same_lateral_modes(s1,s2): boolean = 

ROLL(s1) = ROLL(s2) AND  

      HDG(s1) = HDG(s2) AND  

NAV(s1) = NAV(s2) AND  

NAV_Selected(s1) = NAV_Selected(s2) AND  

LAPPR(s1) = LAPPR(s2) AND  

LAPPR_Selected(s1) =   
LAPPR_Selected(s2) AND  

LGA(s1) = LGA(s2) 

Similarly, states s1 and s2 have the same vertical 
modes if the following PVS predicate holds: 

same_vertical_modes(s1,s2): boolean =  

PITCH(s1) = PITCH(s2) AND  

VS(s1) = VS(s2) AND  

FLC(s1) = FLC(s2) AND  

ALT(s1) = ALT(s2) AND  

ALTSEL(s1) = ALTSEL(s2) AND  

ALTSEL_Selected(s1) = 
ALTSEL_Selected(s2) AND  

ALTSEL_Active(s1) =      
ALTSEL_Active(s2) AND 

  VAPPR(s1) = VAPPR(s2) AND  

VAPPR_Selected(s1) = 
 VAPPR_Selected(s2) AND  

VGA(s1) = VGA(s2) 

Finally, we define two states s1 and s2 to have the 
same modes if the following PVS predicate holds: 
same_modes(s1,s2): boolean =  

AP(s1) = AP(s2) AND  

Pilot_Flying(s1) = Pilot_Flying(s2) AND  

Onside_FD(s1) = Onside_FD(s2) AND  

Overspeed(s1) = Overspeed(s2) AND  

Modes(s1) = Modes(s2) AND  

same_lateral_modes(s1,s2) AND  

same_vertical_modes(s1,s2)  

In a similar manner, we define what it means for 
two states to have the same annunciations. To de-
tect a situation where two different mode configu-
rations have the same annunciations, we attempt to 
prove the following theorem: 
Distinct_Mode_Annunciations : THEOREM  

(NOT same_modes(s1,s2)) AND  

(Is_This_Side_Active(s1) = &(TRUE)) AND  

(Is_This_Side_Active(s2) = &(TRUE)) IMPLIES  

NOT same_annunciations(s1,s2) 

This theorem claims that if states s1 and s2 do not 
have the same modes, their mode annunciations 
must also be different. To simplify the proof, we 
consider only the case where this side of the FGS is 
active for each state. Since an inactive FGS sets its 
modes to those of the active side, this is sufficient 
to show that distinct mode configurations will have 
distinct mode annunciations. 
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While this theorem can be proven directly in 
PVS for the FGS model, it is simpler and more effi-
cient to first prove a number of smaller lemmas re-
lated to each mode and then use these lemmas in the 
proof of the theorem. For example, to ensure that 
two states s1 and s2 with different Flight Director 
modes have different pilot displays, we prove the 
following lemma: 
Distinct_Onside_FD_Annunciations : LEMMA  

NOT (Onside_FD(s1) = Onside_FD(s2)) IMPLIES  

NOT(Onside_FD_On(s1) = Onside_FD_On(s2)) OR  

NOT (Is_This_Side_Active(s1)=  

     Is_This_Side_Active(s2)) 

stating that if the modes of the onside Flight Direc-
tor (Onside_FD) are different in the two states, than 
either the indicators sent to the PFD 
(Onside_FD_On) must be different or the FGS can-
not be active in both states. 

Similarly, to show that two states with differ-
ent ROLL modes have different displays, we prove 
the lemma: 
Distinct_ROLL_Annunciations : LEMMA  

((NOT (ROLL(s1) = ROLL(s2))) AND  

(Is_This_Side_Active(s1) = &(TRUE)) AND  

(Is_This_Side_Active(s2) = &(TRUE)))  

IMPLIES  

NOT (Is_ROLL_Active(s1) =  

        Is_ROLL_Active(s2)) OR  

NOT (Mode_Annunciations_On(s1) =  

        Mode_Annunciations_On(s2)) 

Here, it is necessary to verify that either the value 
sent to the PFD if ROLL mode is active 
(Is_ROLL_Active) or the value sent to the PFD to 
turn the mode annunciations on 
(Mode_Annunciations_On) are different in the two 
states. This is because Is_ROLL_Active is false if 
ROLL mode is cleared (i.e., not selected) or if the 
mode annunciations are turned off. 

The lemmas proven for each mode are then 
used to prove the overall theorem and show that any 
two states with different mode configurations must 
have different displays to the pilot in our model. 

Conclusion 
Mode awareness has been identified by several 

researchers, the FAA, and the aviation industry as 
an important safety concern. Despite this level of 
interest, finding ways to detect and mitigate poten-
tial sources of mode confusion remains as much an 
art as a science.  The basic premise behind our ap-
proach is that certain design features or patterns are 
more likely to cause mode confusion than others. 
This paper describes an approach in which require-
ments and design documents can be analyzed for 
potential sources of mode confusion through the use 
of automated analysis tools, such as model-checkers 
and theorem provers.  

In particular, we have shown how formal 
analysis methods can be used to identify several 
potential sources of mode confusion in a system 
specification. Even though our analysis was only 
partial, we were able to find hidden modes, ignored 
operator inputs, unintended side effects, lack of 
feedback regarding current modes, and surprises in 
how off-normal modes can be entered and exited in 
our example specification. It this analysis was 
applied to an actual system, these potential sources 
of mode confusion could be taken back to the 
engineers, pilots, and experts in human factors for 
closer review.  
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